Global maximizers for adjoint Fourier restriction inequalities on low dimensional spheres
نویسندگان
چکیده
We prove that constant functions are the unique real-valued maximizers for all L2−L2n adjoint Fourier restriction inequalities on unit sphere Sd−1⊂Rd, d∈{3,4,5,6,7}, where n⩾3 is an integer. The proof uses tools from probability theory, Lie functional analysis, and theory of special functions. It also relies general solutions underlying Euler–Lagrange equation being smooth, a fact independent interest which we establish in companion paper [51]. further show complex-valued coincide with nonnegative multiplied by character eiξ⋅ω, some ξ, thereby extending previous work Christ & Shao [18] to arbitrary dimensions d⩾2 even exponents.
منابع مشابه
Maximizers for the Strichartz Inequalities and the Sobolev-strichartz Inequalities for the Schrödinger Equation
In this paper, we first show that there exists a maximizer for the non-endpoint Strichartz inequalities for the Schrödinger equation in all dimensions based on the recent linear profile decomposition results. We then present a new proof of the linear profile decomposition for the Schröindger equation with initial data in the homogeneous Sobolev space; as a consequence, there exists a maximizer ...
متن کاملMaximizers for Gagliardo–nirenberg Inequalities and Related Non-local Problems
In this paper we study the existence of maximizers for two families of interpolation inequalities, namely a generalized Gagliardo–Nirenberg inequality and a new inequality involving the Riesz energy. Two basic tools in our argument are a generalization of Lieb’s Translation Lemma and a Riesz energy version of the Brézis–Lieb lemma.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Bootstrapping Weighted Fourier Inequalities
is finite. The purpose of this paper is to provide a framework for proving inequalities of the form (1). The idea is to exploit the close relationship of the Fourier transform to the operation of convolution and then to apply techniques from the theory of positive integral operators. Although the convolution operators that arise are not necessarily positive, they are trivially majorized by posi...
متن کاملHomotopy groups of spheres and low-dimensional topology
We give a modern account of Pontryagin’s approach to calculating πn+1(S) and πn+2(S) using techniques from low-dimensional topology.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2021
ISSN: ['0022-1236', '1096-0783']
DOI: https://doi.org/10.1016/j.jfa.2020.108825